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Abstract. We calculate the leading divergences at NNLO for the octet part of the non-leptonic weak
sector of chiral perturbation theory, using renormalization group methods. The role of counterterms which
vanish at the equation of motion and their use to simplify the calculation is shown explicitly. The obtained
counterterm Lagrangian can be employed to calculate the chiral double log contributions of quantities in
this sector, most notably the K → ππ amplitude. The double log contribution of the latter is discussed in
a separate paper.

1 Introduction

We determine the leading divergences at NNLO for the
non-leptonic weak chiral Lagrangian which transforms as
an octet under the chiral group, extending the NLO cal-
culation of the latter [1,2]. The obtained counterterm La-
grangian can be used to calculate the leading logarithmic
contributions, double logs in short, of observables in this
sector. These contributions are in particular interesting
since all the low energy constants of higher order are un-
known in this sector. The calculation of logarithmic con-
tributions provides thus the only way to get a first analyt-
ical estimate of the size of the higher order corrections one
has to expect. Analogue calculations in the strong sector
of chiral perturbation theory (CHPT) have already been
worked out [3,4]. The results of this paper are used to
calculate the double logs to the K → ππ amplitude, pre-
sented in a separate paper [5]. For the latter amplitude,
methods have also been worked out to extract the needed
next to leading order (NLO) low energy constants (LEC’s)
by lattice simulations; however, the proposed approach is
rather ambitious [6,7]. Interesting further applications of
the results obtained here are for instance the calculation
of the double logs of the K → πππ or the K → πγγ am-
plitude.

The chiral logs are introduced during the process of
renormalization [8]. These logarithms, which correspond
to the infrared singularities when the masses of the theory
approach zero, can produce sizable contributions to ob-
servables. Using dimensional regularization, it is straight-
forward to understand how the leading logs are related to
the leading counterterms: while renormalizing the theory,
one has to introduce an energy scale µ to ensure the cor-
rect dimensions of observables calculated in d-dimensional
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Table 1. The leading order ππ scattering lengths in two fla-
vor CHPT with the chiral corrections up to NNLO, for some
standard values of the NLO LEC’s and at a renormalization
scale µ = 1 GeV. The double logs are included in the NNLO
correction

LO NLO NNLO Double logs
a0
0 0.156 0.044 0.017 0.013

a0
0 − a2

0 0.201 0.042 0.016 0.012

space-time. In particular, for the divergences generated by
loop calculations, this means that they can only show up
in the following structures:

Q :=
µd−4

(4π)d/2

(
1

4 − d
− 1

2
ln
(

m2

µ2

))
. (1.1)

To illustrate the order of magnitudes of these chi-
ral corrections, Table 1 displays the various contributions
up to NNLO for the ππ scattering lengths in two flavor
CHPT, showing that the double log contribution in this
case amounts to almost the full NNLO corrections, corre-
sponding to close to 10% of the total result [9].

For the case of three flavor CHPT, we show the chiral
corrections up to NNLO to the pion and kaon decay con-
stants and the vector form factor of Kl3 [10,11,3] in Ta-
ble 2. One notices that the relative size of the double logs
is less pronounced than for two flavor CHPT. Typically,
the double logs amount to 20–35% of the total NNLO
contributions, corresponding to about 10% of the total
corrections to the leading order result. Although the nu-
merical values of these corrections are not too large, one
should keep in mind that for applications like chiral ex-
trapolations, the relative size of the double log contribu-
tions to the NLO corrections is of importance, which is in
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Table 2. The chiral corrections up to NNLO for the pion and
kaon decay constants and the vector form factor of Kl3. The
values can however vary considerably, depending on the LEC’s
one employs. The numbers above are calculated with some
standard values of the NLO LEC’s and all the renormalized
NNLO LEC’s set to zero at µ = 770 MeV

LO NLO NNLO Double logs
Fπ/F0 1 0.068 −0.172 −0.050
FK/Fπ 1 0.216 0.035 0.06
f+(0)[Kl3] 1 −0.023 0.015 0.004

the range of 10% and therefore sizable. Let us in this con-
text again emphasize that while it is certainly appropriate
to perform the full two loop calculations in the strong sec-
tor, due to the lack of knowledge of the weak LEC’s the
calculation of the double log contributions is presumably
the best one can ever achieve to get an estimate of the
size of the NNLO corrections in the weak sector. The out-
line of this paper is as follows. In Sect. 2 we introduce the
notation used and give the needed CHPT Lagrangians.
Section 3 provides a very brief overview of the general
framework in which this calculation was performed; the
generating functional is introduced, and it is shown how
one can use the background field method to calculate the
counterterms needed to renormalize the latter.

In Sect. 4 we discuss the role of operators which vanish
at the solution of the equation of motion (EOM terms) to
simplify the calculation of counterterm Lagrangians. One
can choose the coefficients of these EOM terms in a way
that the sum of all one particle reducible (1PR) topologies
at a given �-order will not generate any divergences. We
pin down these coefficients and henceforth only need to
take into account one particle irreducible (1PI) topologies.

In Sect. 5, we sketch very briefly the renormalization
group techniques which are employed in the present cal-
culation. The basic result of this section is that one can
obtain the �-order 2 highest pole counterterm (NNLO) by
performing a one loop calculation which uses the �-order
1 (NLO) counterterm as input. In the last part, Sect. 6,
we illustrate how the concrete calculation works with two
simple examples.

2 CHPT Lagrangian

The lowest order chiral Lagrangian which allows for ∆S =
1 strangeness changing interactions is given by (through-
out this section we will work in euclidean space-time):

L(0) = L(0)
s + L(0)

∆S=1, (2.1)

which encodes the dynamics of the pseudo-Goldstone
bosons in the presence of external source fields s, p, vµ, aµ.
The first term corresponds to the strong interaction La-
grangian:

L(0)
s =

F 2
0

4
(〈uµuµ〉 − 〈χ+〉), (2.2)

where 〈·〉 stands for the flavor trace. Further we used:

uµ = i
(
u†(∂µ − irµ)u − u(∂µ − ilµ)u†),

χ+ = u†χu† + uχ†u. (2.3)

A list of additional building blocks used for the La-
grangians of higher order can be found in Appendix D.

The u matrix encodes the octet of the light pseudo-
scalar bosons in the exponential parametrization:

u = exp
(

iφ√
2F

)
;

φ =




π0√
2

+ η8√
6

π+ K+

π− − π0√
2

+ η8√
6

K0

K− K̄0 − 2η8√
6


 . (2.4)

The definitions in (2.3) embody also rµ and lµ, the exter-
nal vector source fields, whereas the scalar counterparts
are encoded in χ (M being the quark mass matrix):

χ = 2B0
(
M + s(x) + ip(x)

)
.

B0 is related to the vacuum expectation value of the scalar
quark density:

〈0|q̄q|0〉 = −F 2
0 B0(1 + O(M)).

F0 � 92.4 MeV corresponds to the chiral limit value of the
pion decay constant.

The Lagrangian which triggers flavor changing pro-
cesses is given by:

L(0)
∆S=1 = CF 4

0

(
g8〈∆32uµuµ〉 − g

′
8〈∆32χ+〉

+g27t
ij;kl〈∆ijuµ〉〈∆kluµ〉

)
+ h.c., (2.5)

with t11;23 = t13;21 = t21;13 = t23;11 = 1/3 , t22;23 =
t23;22 = t23;33 = t33;23 = −1/6, and all other t’s vanishing.

The constant C,

C = −GF√
2
VudV

∗
us, (2.6)

renders the coupling constants g8, g
′
8 and g27 dimension-

less.
∆ij is defined as

∆ij := uλiju
†; (λij)ab = δaiδbj .

The first two operators in (2.5), proportional to g8 and
g

′
8 transform as an octet, (8, 1), under the chiral group

SU(3)L ⊗ SU(3)R, whereas the last, proportional to g27,
transforms like a 27-plet, (27, 1). We neglected a third con-
tribution transforming like (8, 8), which takes into account
virtual photons.

Since the octet part of (2.5) is believed to be the main
source of the ∆I = 1/2 rule, we will only use the latter
in our calculation. Furthermore we discard the part pro-
portional to g

′
8, since it does not contribute to on-shell
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processes [12–14,1]. Of the remaining operator we only
use its CP even part, which we will henceforth denote by
L(0)

w :

L(0)
w := CF 4

0 g8〈∆uµuµ〉; ∆ := uλ6u
†. (2.7)

In addition to the lowest order Lagrangians L(0)
s and L(0)

w
discussed above, we will also use the NLO Lagrangian
L(1)

w , introduced in (3.6).

3 The � expansion of the generating
functional

In this section we set up some notation and discuss the
NLO and NNLO expressions for the generating functional
of the non-leptonic weak chiral Lagrangian.

3.1 Notation

The generating functional is defined as the vacuum to vac-
uum transition amplitude in the presence of sources, col-
lectively denoted by j (throughout this section we will be
working in euclidean space-time):

eZ[j]/� = N

∫
Π[Dφi]e−S[φ,j]/�. (3.1)

Z[j] as well as S[φ, j] can be split into a strong and weak
part:

Z[j] = Zs[j] + Zw[j];
S[φ, j] = Ss[φ, j] + Sw[φ, j], (3.2)

analogously to (2.1). These can be expanded in their �-
order:

Zs[j] =
∞∑

n=0

Z(n)
s [j]; Ss[φ, j] =

∞∑
n

Ss
n[φ, j], (3.3)

and similarly for the weak part.
The tree level generating functional Z(0)[j] corre-

sponds to the action with the lowest order chiral La-
grangian, evaluated at the EOM:

Z(0)[j] = S(0)[φ̄, j]. (3.4)

One can calculate the separate �-order contributions to
the generating functional by use of the background field
method, which is briefly outlined in Appendix A. The
strong and weak non-leptonic chiral actions are expanded
in quantum fluctuation fields ξ around a field φ̄, which
in the following is assumed to be a solution of the classi-
cal equation of motion, i.e. s̄i

0 = 0. To keep the notation
simple, we will henceforth suppress the arguments of Z[j],
S[φ, j] and L[φ]:

Ss = S̄s + s̄iξi +
1
2!

s̄ijξiξj +
1
3!

s̄ijξiξjξk

+
1
4!

s̄ijklξiξjξkξl + O(ξ5),

Sw = S̄w + w̄iξi +
1
2!

w̄ijξiξj +
1
3!

w̄ijkξiξjξk

+
1
4!

w̄ijklξiξjξkξl + O(ξ5).

This expansion provides the vertices which will be needed
for the calculation of Z

(2)
w ; see (3.9). The Latin indices

i, j, ... correspond to an SU(N) index as well as a space-
time degree of freedom. The field φ̄ is treated as a back-
ground field, and the ξ-field is employed as new integration
variable in the path integral; see (3.1). The perturbative
evaluation of this “new” generating functional results in
vacuum diagrams with respect to the ξ fields.

3.2 NLO: Z(1)
w

The counterterms needed to renormalize Z
(1)
w ,

Z(1)
w =

1
2
w̄ij

0 Gij + S̄w
1 , (3.5)

were first calculated by Kambor, Missimer and Wyler [1].
Throughout this paper, we will however use the basis of
operators given by Ecker, Kambor and Wyler (EKW) [2],
who used the EOM to reduce the former. This Lagrangian
assumes the form:

L(1)
w = Cg8F

2
0

37∑
i=1

c
(1)
i W

(1)
i , (3.6)

where the bare LEC’s c
(1)
i are split into a renormalized

and counterterm part:

c
(1)
i = (µc)−ε

(
c
(1)r
i (µ, ε) + a

(1)
1 i Λ

)
. (3.7)

µ is the renormalization scale and the constant c
parametrizes the regularization prescription (ln(c) =
exp(−(ln(4π) + Γ

′
(1) + 1)/2 for MS ). In addition we use

the notation:

ε := 4 − d ; N̂ := (4π)−2 ; Λ :=
N̂

ε
. (3.8)

In Table 3, we list the operators of the EKW basis needed
for the K → ππ amplitude at NLO, as well as those which
can be shifted by terms which vanish at the equation
of motion (marked by an asterisk). The operators given
above differ slightly from the original EKW basis, which
used W36 = 〈∆([χ+ , χ− ] +χ+

2 −χ−
2)〉. We use the above

definition of W36 since it simplifies the discussion of the
operators which vanish at the solution of the equation of
motion in Sect. 4 somewhat.

3.3 NNLO: Z(2)
w

At �-order 2, we have the following diagrams:

Z(2)
w = −1

6
w̄ijk

0 GirGjsGkts̄
rst
0 +

1
8
Gijw̄

ijkl
0 Gkl
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Table 3. List of operators needed for the K → ππ amplitude
as well as those which can be shifted by EOM terms, marked
by an asterisk. The a

(1)
1 i are given for Minkowski space-time.

N corresponds to the number of flavors

i W
(1)
i a

(1)
1 i a

(1)
1 i (N = 3) EOM

5 〈∆{χ+ , u2}〉 −N/2 −3/2
7 〈∆χ+〉〈u2〉 3/4 + N/8 9/8
8 〈∆u2〉〈χ+〉 −1/4 + N/4 1/2
9 〈∆[χ− , u2]〉 −N/4 −3/4 ∗
10 〈∆χ+

2〉 −3/N + N/4 −1/4
11 〈∆χ+〉〈χ+〉 −1/2 − 2/N2 −13/18
12 〈∆χ−

2〉 0 0 ∗
13 〈∆χ−〉〈χ−〉 0 0 ∗
23 〈∆µ{χ− , uµ}〉 0 0 ∗
36 〈∆[χ+ , χ− ]〉 −1/N + N/4 5/12 ∗

+
1
2
w̄ij

1 Gij − 1
2
w̄ik

0 GijGkls̄
jl
1 − 1

4
Gijw̄

ijk
0 Gkr s̄

rst
0 Gst

+
1
4
w̄ij

0 GikGjls̄
jkm
0 Gmns̄mrs

0 Grs − 1
2
w̄i

1Gir s̄
rst
0 Gst

− 1
2
Gijw̄

ijk
0 Gkr s̄

r
1 +

1
2
w̄ik

0 GijGkls̄
jlm
0 Gmns̄n

1 − w̄i
4Gir s̄

r
1

+ S̄w
2 + O(G2

F), (3.9)

where Gij is the propagator corresponding to the ξ
field, whose ultraviolet divergent part is provided in Ap-
pendix B. The subscript of the vertices denotes their �-
order. The diagrams corresponding to (3.9) are drawn in
Fig. 1.
The NNLO Lagrangian L(2)

w , represented by diagram k in
Fig. 1, has to cancel the divergences which are generated
from the loop part of Z

(2)
w . It takes the form:

L(2)
w = Cg8

∑
i

c
(2)
i W

(2)
i , (3.10)

with the bare LEC’s:

c
(2)
i = (µc)−2ε

(
c
(2)r
i

(
µ, ε
)

+ a
(2)
1 i

(
c(1)(µ, ε)

)
Λ + a

(2)
2 i Λ2

)
.

(3.11)

3.3.1 The connection between A(2)
2

and the double chiral logs

The highest pole of L(2), A(2)
2 :=

∑
a
(2)
2 i W

(2)
i , can be used

to calculate the double chiral logs which are generated
from genuine two loop diagrams of a process under con-
sideration. Let us outline how this works. The sum of all
diagrams in Fig. 1 with the exception of the counterterm
diagram k will result in an expression which is propor-
tional to the square of Q, see (1.1), plus other contribu-
tions which are not related to double logs (abbreviated by
the dots):

Cg8

∑
i

αiW
(2)
i Q2 + ...

= Cg8

∑
i

αiW
(2)
i µ−2ε

×

Λ2 − ΛN̂ log

(
m2

µ2

)
+

(
N̂

2
log
(

m2

µ2

))2

+ ...

The Λ2 divergences above have to be canceled by A(2)
2 ,

which translates into the following identity:

Cg8µ
−2ε

∑
i

αiW
(2)
i

(
N̂

2
log
(

m2

µ2

))2

= −Cg8µ
−2ε

∑
i

a
(2)
2 i W

(2)
i

(
N̂

2
log
(

m2

µ2

))2

= −Cg8µ
−2εA(2)

2

(
N̂

2
log
(

m2

µ2

))2

.

In addition to the “genuine” double logs above, there are
also contributions from one particle reducible topologies,
the LSZ reduction, plus shifts of bare parameters to their
renormalized values in lower order contributions of the
process under consideration.

4 Equation of motion terms

In [15] it was shown that one has to allow for operators
which vanish at the solution of the equation of motion
(EOM terms in short) to define a basis in which one parti-
cle reducible (1PR) graphs contributing to the generating
functional do not generate divergences. The equation of
motion in euclidean space-time reads:

X̂ := ∇µuµ +
i
2
χ̂− = 0, (4.1)

with

∇µuµ := ∂µuµ + [Γµ, uµ],

Γµ :=
1
2
(
u†(∂µ − irµ) + u(∂µ − ilµ)u†),

χ̂− := χ− − 〈χ−〉/N.

Before we can start with the actual calculation discussed
in Sects. 5 and 6, we need to define this proper basis, rel-
evant for our computation. Defining the generating func-
tional of proper vertices:

Γ̄ (n)
a [J ] = Γ (n)

a [J, φ]φ=φ̄ := Z(n)1PI
a [J ]; a = s, w,

(4.2)

evaluated at the solution of the EOM, and its functional
derivative:

Γ̄ (n) i
a [J ] = (Γ (n) i

a [J, φ])φ=φ̄; a = s, w,
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w4
0

a

w3
0 s3

0

b

w3
0 s3

0

c

w2
1

d

w2
0 s3

0 s1
1

e

w2
0 s3

0 s3
0

f

w2
0 s2

1

g

w3
0 s1

1

h

w1
1 s3

0

i

w1
1 s1

1

j

S̄w
2

k

Fig. 1. Diagrams contributing to the generating functional Z
(2)
w . They split into the class of 1PI diagrams (a,b,d,g), the 1PR

diagrams (c,e,f,h,i,j), and the �-order 2 action S̄w
2 , diagram k

we can decompose Z
(2)
w into a 1PI and 1PR part:

Z(2)
w = Z(2)1PI

w + Z(2)1PR
w = Γ̄ (2)

w − Γ̄ (1) i
w GijΓ̄

(1) j
s . (4.3)

As (4.3) illustrates, the 1PR portion of Z will not con-
tribute to divergences if in addition to Γ itself all its func-
tional derivatives are finite. The latter can be achieved by
appropriate additions of EOM terms to the Lagrangian
[15]. (We will however conclude this section with a
stronger proposition on this point.)

In the strong sector, we have at �-order 1:

L̂(1)
s := LGL + x

(1)
1 〈χ−X̂〉 + x

(1)
2 〈X̂X̂〉, (4.4)

with LGL the usual Gasser–Leutwyler Lagrangian [16,17]
and two additional EOM terms with coefficients x

(1)
1 , x

(1)
2 .

It was shown in [3] that the Γ
(1) i
s is finite if one dis-

cards the EOM terms altogether (i.e. x
(1)
1 = x

(1)
2 = 0),

which is sufficient for our purposes. This result is to be
expected since the only building block in LGL which corre-
sponds to EOM terms, 〈χ−χ−〉, has a vanishing divergent
counterterm.

In the weak sector, things get a little bit more involved.
In addition to the EKW Lagrangian given in (3.6), we have
six EOM terms:

L̂(1)
w = Cg8F

2
0

(
37∑

i=1

c
(1)
i W

(1)
i +

6∑
i=1

e
(1)
i E

(1)
i

)
, (4.5)

Table 4. All EOM terms for L(1)
w . In the last column we pro-

vide the operators of the EKW basis, given in Sect. 3, Table 3,
which corresponds to the respective EOM term

i E
(1)
i k (W (1)

k )
1 i〈∆[u2, X̂]〉 9
2 i〈∆{χ− , X̂}〉 12
3 〈∆X̂X̂〉 12
4 i〈∆X̂〉〈χ−〉 13
5 〈∆µ{uµ, X̂}〉 23
6 i〈∆[χ+ , X̂]〉 36

listed in Table 4.
In order to pin down the coefficients e

(1)
i , we calculate

the functional derivative Γ̄
(1) i
w = Z

(1) i
w explicitly:

Γ̄ (1) i
w =

1
2
w̄ijk

0 Gjk − 1
2
s̄ijk
0 GjlGkmw̄lm

0 + w̄i
1. (4.6)

The diagrammatic representation of (4.6) is shown
in Fig. 2. To compute the ultraviolet divergent part of
these diagrams, we have to expand the lowest order La-
grangians, (2.2) and (2.7), together with the counterterm
Lagrangian A1

1 =
∑

ZiWi, associated with (3.6). In Ap-
pendix Appendix E: we give the expansion of the building
blocks defined in (D.1) in terms of the quantum fluctua-
tions ξ and the background fields.
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w3
0 s3

0 w2
0 w1

1

Fig. 2. Graphical representation of (4.6)

The Wick contractions are then performed using the
heat kernel representation of propagators, briefly ex-
plained in Appendix B. For the tadpole diagram w̄ijk

0 Gjk,
one uses the identities given in (B.8), whereas for the dia-
gram s̄ijk

0 GjlGkmw̄lm
0 , one employs the identities for prod-

ucts of propagators, provided in (B.5), (B.6) and (B.9). A
more explicit discussion of how the computation works is
given in Sect. 6.

The calculation, whose result is too lengthy to be
displayed here, yields for the coefficients e

(1)
i (euclidean

space-time, N is the number of flavors):

e
(1)
1 =

N

2
;

e
(1)
2 = e

(1)
3 = e

(1)
4 = e

(1)
5 = 0 ;

e
(1)
6 = −N

2
+

2
N

.

(4.7)

This shift of the original EKW Lagrangian corresponds to
a replacement of the following building blocks:

W9 = 〈∆[χ− , u2]〉 −→ W ′
9 · 2i := 〈∆[∇µuµ, u2]〉 · 2i,

W36 = 〈∆[χ+ , χ− ]〉 −→ W ′
36 · 2i := 〈∆[χ+ ,∇µuµ]〉 · 2i.

(4.8)

It is striking that W9 and W36 are the only operators which
can be shifted by EOM terms and have a non-vanishing
counterterm coefficient a

(1)
i (see Table 3). This observation

leads to the conjecture that ∇µuµ instead of χ̂− should be
used in loop calculations. A more general discussion of this
point will be given in a separate paper [18].

5 The calculation of A(2)
2

For the computation of A(2)
2 , we use renormalization group

techniques. If we write L(2)
w , given in (3.10), split into the

renormalized and counterterm part as follows:

L(2)
w = Cg8

(L(2) r
w + A(2)

1 Λ + A(2)
2 Λ2), (5.1)

the RGE imply the identity (∂(n)
i = ∂/∂c

(n)r
i ):

A(2)
2 =

1
2
a

(1)
1 ∂(1)A(2)

1 , (5.2)

with a
(1)
1 being the counterterm of L(1)

w , defined in (3.7).
For the case of the weak non-leptonic sector, Fig. 1 shows

A
(2)
2

=
1

2 A
(1)
1

Fig. 3. Calculation of A(2)
2 with the RGE

all diagrams which can contribute to divergences at �-
order 2. If we act with the operator on the RHS of
(5.2), a

(1)
1 ∂(1), on all these diagrams and neglect the 1PR

topologies (see Sect. 4), there is only diagram d which can
give a non-vanishing contribution. The general diagram-
matic representation of this statement, see (5.2), is shown
in Fig. 3. A thorough discussion and derivation of this
RGE approach can be found in [15]. The specific result,
(5.2), was already used in [19].

Due to the RGE, we can therefore obtain the leading
poles at �-order 2 by computing only the one loop diagram
d in Fig. 1 and weighting it with the factor 1/2, instead of
having to calculate the genuine 1PI two loop diagrams a
and b.

In Appendix C we provide all the operators of A(2)
2

which can contribute to amplitudes involving at most four
pseudo-Goldstone particles and no vector sources, denoted
by Ã(2)

2 . This result has been used for the calculation of the
double log contribution to the K → ππ amplitude, which
is presented in a separate paper [5]. The full expression
is approximately four times the size of the truncated one
shown in the appendix, and thus too lengthy to be dis-
played in this paper. It can however be obtained from
the author. An overview about the workings of the actual
computation can be found in Sect. 6.

6 Outline of the computation

In this section we provide a sketch of how the whole cal-
culational machinery used in this paper works.

6.1 Tadpole graphs

We will illustrate the computation of a tadpole graph by
computing a part of A(2)

2 with the help of (5.2). Our start-
ing point is the counterterm of the NLO Lagrangian L(1)

w
[1,2]. For completeness we provide the expanded build-
ing blocks needed in Appendix Appendix E:. We decided,
however, not to reproduce the whole expanded expression
of A(1)

1 here, since it is rather long.
We will restrict ourselves to the first building block

which occurs in A(1)
1 , W1 = 〈∆u2u2〉, which we expand in

the quantum fluctuation fields ξ:

〈∆u2u2〉
= 〈∆̄ū2ū2〉

+
i
2
〈∆̄[ū2ū2, λi]〉ξi − 〈∆̄{ū2, {ūµ, λi}}〉ξi

µ
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− 1
8
〈∆̄({ū2, {ūµ, [[ūµ, λi], λj ]}}

+[[ū2ū2, λi], λj ]
)〉ξiξj

− i
2
〈∆̄[{ū2, {ūµ, λi}}, λj ]〉ξi

µξj (6.1)

+ 〈∆̄({ū2, λiλj} + {ūµ, λi}{ūν , λj}
)〉ξi

µξj
ν + O(ξ3).

Due to delta functions generated by functional differen-
tiation, no space-time integration survives and all build-
ing blocks and ξ fields in (6.1) are evaluated at the same
space-time point x. Indices in SU(N) space are denoted
by i, j. The ξ fields of the bilinear terms proportional to
ξiξj , ξiξj

µ and ξi
µξj

ν are then contracted with the heat
kernel representations of G∆(x, x), dx

µG∆(x, y)|y=x and
dx

µdy
νG∆(x, y)|y=x respectively, listed in (B.8). For the first

contributing term in (6.1) we get the following contribu-
tion to the action S̄w

2 :

−1
8

∫
ddx〈∆̄({ū2, {ūµ, [[ūµ, λi], λj ]}}

+[[ū2ū2, λi], λj ]
)〉G∆(x, x)ij

= − (cµ)−εΛ

4

∫
ddx〈∆̄({ū2, {ūµ, [[ūµ, λi], λj ]}}

+[[ū2ū2, λi], λj ]
)〉(a∆

1 )ij + finite terms

= − (cµ)−εΛ

4

∫
ddx〈∆̄({ū2, {ūµ, [[ūµ, λi], λj ]}}

+[[ū2ū2, λi], λj ]
)〉

− 1
8
〈[uµ, λi][uµ, λj ] + {λi, λj}χ+〉 + f.t. (6.2)

For the subsequent contraction of the SU(N) indices i, j
one uses the completeness relations:

N2−1∑
i=1

〈λiAλiB〉 = − 2
N

〈AB〉 + 2〈A〉〈B〉,

N2−1∑
i=1

〈λiA〉〈λiB〉 = 2〈AB〉 − 2
N

〈A〉〈B〉. (6.3)

This last step of the computation is obviously straightfor-
ward, and we forbear to display the final result, since it is
again rather lengthy.

6.2 Beyond the tadpole

The computation of the functional derivative of Γ
(1)
w , see

(4.6), involves a diagram with two propagators and is
therefore a little bit more involved: in addition to the
SU(N) contractions one has to deal with the space-time
dependent part of the product of the two propagators.
Let us again restrict ourselves to the simple case of a part
of the computation where the vertices do not carry any
derivatives acting on the ξ fields. The structure of such a
piece is then:

Qa =
∫

ddxddy vajk
s (x)Gjl(x, y)Gkm(x, y)vlm

w (y). (6.4)

Here i, j, k, l, m are again pure SU(N) indices, and a corre-
sponds to the space-time point xi as well as to the SU(N)
index i. The space-time dependent part can be evaluated
with the help of (B.6) and (B.9) (we suppress the vertices
vajk
s (x) and vlm

w (y) in this step):∫
ddxddyGjl(x, y)Gkm(x, y)

=
(

4N̂
Γ (1 − ε/2)

π−ε/2

)2

×
∫

ddxddy a∆
0 (x, y)jla

∆
0 (x, y)km|x − y|−d+ε + f.t.

=
(

4N̂
Γ (1 − ε/2)

π−ε/2

)2

(π)d/2 Γ (ε/2)
Γ (d/2)

×
∫

ddxddy a∆
0 (x, y)jla

∆
0 (x, y)kmµ−εδd(x − y) + f.t.

= 2(cµ)−εΛ

∫
ddx δjlδkm + f.t. (6.5)

Reinserting the vertices again, we finally get (vajk(x) =
δd(x − xi)vijk(x)):

Qa = Qi(xi) = 2(cµ)−εΛ

∫
ddx vajk

s (x)vjk
w (x) + f.t.

= 2(cµ)−εΛ vijk
s (xi)vjk

w (xi) + f.t. (6.6)

If ξ fields with derivatives are contracted, one will in ad-
dition generate derivatives acting on the delta function
in (6.5). These derivatives can be shifted to the vertices
and Seeley–DeWitt coefficients by partial integration. As
a last step, we will again have to contract the SU(N) in-
dices of the vertices with the ones of the Seeley–DeWitt
coefficients of the expansion of the propagator, see (B.5),
using once more the completeness relations in (6.3).

6.3 Verification of the calculation

This computation was exclusively performed with FORM
3.1 [20], a symbolic manipulation program. Since the
whole calculation is thus fully automatized, one can con-
veniently adapt the code to problems whose solutions are
known: In order to check the written code, we used it to
recalculate two known counterterm Lagrangians. We re-
placed the original Lagrangian A(1)

1 (see Fig. 3) with the
respective Lagrangians required for their calculation as
starting point, but left the rest of the code unchanged.
(1) We recalculated the counterterms for L(1)

w using the
method outlined in this paper, i.e. by the computation of
the ring diagram 1

2 w̄ijGij instead of using the logarithm:
1
2Tr(ln(∆s + ∆w)) and projecting out the part linear in
GF, as employed in the original calculation [1]. We found
total agreement.
(2) We recalculated the leading poles at �-order 2 in the
strong sector and compared our result with the one ob-
tained by Bijnens, Colangelo and Ecker [3,4]. The out-
come of our computation matched completely with their
result.
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Since this is the very first NNLO calculation of CHPT
in the weak sector, it was not possible to compare it di-
rectly with genuine two loop calculations. However, in our
opinion, the two checks listed above, in particular the sec-
ond one, are highly nontrivial, and yield sufficient evidence
that the FORM code written for the computation is cor-
rect.

7 Conclusions

We have determined the leading divergences for the weak
non-leptonic chiral Lagrangian at NNLO for the part
which transforms like an octet under the chiral group, ex-
tending the analogue computation of the NLO countert-
erms [1,2]. The obtained result can be used to calculate
double log contributions of observables, which at two loop
order are the only quantities that do not depend on any
LEC’s 1. Unlike in the strong sector, in the weak sector it
is extremely difficult to determine these LEC’s, and pre-
sumably one will not be able to pin them down in the
near future, if ever. Thus, the double logs provide a first
estimate about the NNLO corrections one has to expect,
without the need of these unknown LEC’s as input. Typ-
ically, the double log contributions in three flavor CHPT
amount to around 10% of the corrections to the lowest
order result.

Corrections to lowest order CHPT quantities are used
for chiral extrapolations of lattice data. In these days,
lattice simulations have entered a stage where one uses
fully unquenched quarks, and aim to predict observables
with an accuracy in the range of some percent. In view
of such high precision, it certainly makes sense to include
NNLO corrections in these extrapolations. The main ob-
jective of the present calculation is the use of the countert-
erm Lagrangian for the computation of the corresponding
double log contributions to the K → ππ amplitude in the
∆I = 1/2 channel, which is presented in another paper
[5]. Other interesting applications are analogue calcula-
tions for the K → πππ and K → πγγ amplitudes.

Acknowledgements. I would like thank Gilberto Colangelo for
participation in the early stages of this work, many very helpful
discussions, and continuous encouragement.

Appendix A: Background field method

In this appendix we provide a very brief outline of the
background field formalism [21], which was used in the
present calculation. The field φ in U = exp(i

√
2φ/F ) is

split into a background part φ̄, which is normally taken
to be at the solution of the equation of motion, and a
quantum fluctuation field ξ:

φ = φ̄ + ξ/
√

2. (A.1)

1 besides subtracted loop integrals which would require a
fully-fledged two loop calculation.

φ̄ will be used as an external field, i.e. it will not propagate;
therefore, only ξ can generate � corrections. With this
substitution, the action assumes the form:

S[φ] → S[φ̄] +
1
2!

S[φ̄]ijξiξj +
1
3!

S[φ̄]ijkξiξjξk

+
1
4!

S[φ̄]ijklξiξjξkξl + ... (A.2)

In the equation above we have assumed that φ̄ is a solution
of the equation of motion, so that the linear term in the
expansion vanishes. The RHS of (A.2) can now be viewed
as the new Lagrangian where the new integration variables
of the path integral are ξ instead of φ. The inverse of the
bilinear operator in ξ, S[φ̄]ij(x, y) = δd(x − y)∆ij , corre-
sponds as usual to the propagator. Please note that we will
only use the bilinear part of the strong chiral Lagrangian
to define the propagator; the expanded form of the weak
non-leptonic chiral Lagrangian will only be needed for the
definition of vertices, each insertion thereof corresponding
to a factor GF. ∆ is brought into the canonical form of an
elliptical operator:

∆ij = (−d2
x + σ(x))ij , (A.3)

dµ kl = δkl∂µ + γµ(x)kl, (A.4)

which have the following explicit form for the CHPT La-
grangian, (2.2):

γµ ij = −1
2
〈Γµ[λi, λj ]〉,

σij =
1
8
〈[uµ, λi][uµ, λj ] + {λi, λj}χ+〉. (A.5)

and will be used to define the propagator in Appendix B.
The field strength associated to dµ:

γµν = [dµ, dν ] = ∂µγν − ∂νγµ + [γµ, γν ], (A.6)

will also be needed, and takes the explicit form:

γµν ij = −1
2
〈Γµν [λi, λj ]〉; Γµν =

1
4
[uµ, uν ] − i

2
f+µν .

(A.7)

Appendix B: The heat kernel method

In this appendix we give a brief summary of the heat ker-
nel method as developed by Jack and Osborn [22] and
provide a compilation of the results which are needed for
the calculation. Throughout this section we work in eu-
clidean space-time. The presentation is to a large extent
based on [22,4] and some results provided in [23].

Let us consider the propagator G∆(x, y) associated to
∆, which in euclidean space-time is defined by:

∆xG∆(x, y) = δ(x − y). (B.1)
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In the Schwinger representation, G∆(x, y) is written as an
integral over the eigentime τ :

G∆(x, y) =
∫ ∞

0
dτρ(τ, ε)G∆(x, y; τ). (B.2)

The kernel of the integral, G∆(x, y; τ), satisfies the diffu-
sion equation:

∂τG∆(x, y; τ) = −∆xG∆(x, y; τ) (B.3)

and the boundary condition G∆(x, y; 0) = δ(x − y).
G∆(x, y; τ) can be expanded in the Seeley–DeWitt co-

efficients:

G∆(x, y; τ) =
1

(4πτ)
d
2
e

|x−y|2
4τ

∞∑
j=0

a∆
j (x, y)τ j , (B.4)

and after solving the integral (B.2) with the regulator
function ρ(ε, τ) = (4πτ)− ε

2 corresponding to dimensional
regularization, one gets the asymptotic formula:

G∆(x, y)

= G0(x − y)a∆
0 (x, y) + R1(x − y; cµ)a∆

1 (x, y)

+R2(x − y; cµ)a∆
2 (x, y)

+R3(x − y; cµ)a∆
3 (x, y) + G∆(x, y; cµ), (B.5)

with the coefficients:

G0(x) = N̂
Γ
(
1 − ε

2

)
4π− ε

2
|x|ε−2,

R1(x; cµ) = 2(cµ)−εΛ + N̂
Γ
(− ε

2

)
π ε

2
|x|ε,

R2(x; cµ) =
|x|2
4

(
−2(cµ)−εΛ + N̂

Γ
(−1 − ε

2

)
π ε

2
|x|ε
)

,

R3(x; cµ) = |x|4
(

(cµ)−εΛ + N̂
Γ
(−2 − ε

2

)
π ε

2
|x|ε
)

,

(B.6)

where c parametrizes the renormalization prescription
(ln(c) = exp(−(ln(4π) + Γ

′
(1) + 1)/2 for MS.).

Equation (B.5) is only valid asymptotically for τ → 0
and can therefore only be used to extract the ultravio-
let behavior of the propagator. The Seeley–DeWitt coeffi-
cients are given by:

a∆
0 = 1,

a∆
1 = −σ,

a∆
2 =

1
12

γµνγµν +
1
2
σ2 − 1

6
dµdµσ, (B.7)

with σ and the field strength γµν defined in (A.5) and
(A.6) respectively.

In order to calculate the divergences of the tadpole
graphs like Fig. 3, we need the propagator with up to three
derivatives, which can be calculated by use of (B.6), pro-
jecting out the space-time independent part:

G∆(x, x) = (cµ)−εΛ 2a∆
1 (x, x) + G∆(x, x; cµ),

dx
µG∆(x, y)

∣∣
y=x

= (cµ)−εΛ 2dx
µa∆

1 (x, y)
∣∣
y=x

+ dx
µG∆(x, y; cµ)

∣∣
y=x

,

dx
µdy

νG∆(x, y)
∣∣
y=x

= (cµ)−εΛ
(
2dx

µdy
νa∆

1 (x, y)
∣∣∣
y=x

+ δµνa∆
2 (x, x)

)
+ dx

µdy
νG∆(x, y; cµ)

∣∣
y=x

,

dx
µdx

νG∆(x, y)
∣∣
y=x

= (cµ)−εΛ
(
2dx

µdx
νa∆

1 (x, y)
∣∣∣
y=x

− δµνa∆
2 (x, x)

)
+ dx

µdx
νG∆(x, y; cµ)

∣∣
y=x

,

dx
µdx

νdy
ρG∆(x, y)

∣∣
y=x

= (cµ)−εΛ
(
2dx

µdx
νdy

ρa∆
1 (x, x)

−(δµνdy
ρa∆

2 (x, x) − δµρd
x
νa∆

2 (x, x)

−δνρd
x
µa∆

2 (x, x)
) )

+ dx
µdx

νdy
ρG∆(x, y; cµ)

∣∣
y=x

. (B.8)

For the calculation of the divergences of the functional
derivative of Z

(1)
w , see (4.6) or Fig. 2, one needs to deal with

products of propagators. After a couple of manipulations,
the space-time dependent part of such products can be
brought into the form of a sum of terms proportional to:

n∏
j=1

∂z
αj

1
|z|2m

; z := y − x; ∂x
µ = −∂z

µ; ∂y
µ = ∂z

µ.

Such terms can be represented by delta functions via their
Fourier transforms in d space-time dimensions:∫

ddz
1

|z|2m
= π

d
2
Γ (−(m − d/2))

Γ (m)
(
q2)m−d/2

, (B.9)

substituting q2n−kε → µ−kε(−∂2)nδd(z) ; n, k ∈ N0, from
which the ultraviolet divergent parts can easily be ex-
tracted.

Appendix C: Explicit result for A(2)
2

We have:

Ã2
2

= 〈∆χ+χ+χ+〉
(

−21
8

+
6

N2 − N

8
+

5N2

32

)

+ 〈∆χ+χ+〉〈χ+〉
(

1
2

− 5
N3 − 1

N
+

N

2
− N2

32

)

+ 〈∆χ+〉〈χ+χ+〉
(

1
4

− 2
N3 +

3
8N

+
5N

32
− N2

32

)

+ 〈∆χ−〉〈χ+χ−〉
(

− 2
N3 − 5

4N
+

N

16

)
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+ 〈∆χ−〉〈χ+〉〈χ−〉
(

2
N4 +

1
2N2

)

+ 〈∆χ+〉〈χ+〉〈χ+〉
(

1
8

+
2

N4 +
9N2

8
− 7

16N
− 3N

32

)

+ 〈∆χ−χ−〉〈χ+〉
(

− 3
N3 − 3

8N
+

3N

32

)

+ 〈∆χ−χ+χ−〉
(

−3
8

+
4

N2 +
N2

32

)

+ 〈∆χ+〉〈χ−χ−〉
(

− 1
8N

− N

32

)

+ 〈{∆χ−χ−χ+}〉
(

−1
8

+
2

N2 +
N2

32

)

+ 〈{∆χ−χ+}〉〈χ−〉
(

− 1
N3 − 5

8N
+

N

32

)

+ 〈[∆χ−χ+ ]〉〈χ+〉
(

1
2N3 +

5
8N

− N

16

)

+ 〈[∆χ−χ+χ+ ]〉
(

−1
8

− 1
2N2

)

+ 〈∆χ µ
+µ〉〈χ+〉

(
3
8

− 1
2N

+
N

16
− N2

16

)

+ 〈[∆χ−χ µ
+µ]〉

(
−1

4
+

N2

16

)

+ 〈∆uµχ+uµ〉〈χ+〉
(

− 9
16

+
7

8N
− 3N

32
+

3N2

32

)

+ 〈∆χ+〉〈χ µ
+µ〉

(
1
16

+
7

8N
− N

8
− N2

16

)

+ 〈∆uµ〉〈χ+uµ〉〈χ+〉
(

1
8

+
5

4N2 +
1

8N
+

N

8

)

+ 〈∆uµ〉〈χ+χ+uµ〉
(

−1
4

− 2
N1 +

N

32
+

N2

16

)

+ 〈{∆χ µ
+µχ+}〉

(
−3

8
− N

16
+

N2

8

)

+ 〈∆χ+〉〈χ+u2〉
(

− 1
16

− 15
8N

+
3N

4
+

3N2

32

)

+ 〈∆uµχ+χ+uµ〉
(

−1
4

+
N

16

)

+ 〈∆u2〉〈χ+〉〈χ+〉
(

− 3
32

− 7
8N2 +

1
8N

+
3N

32

)

+ 〈∆u2〉〈χ+χ+〉
(

−1
4

+
9

8N
− N

16
+

N2

16

)

+ 〈∆u2χ+〉〈χ+〉
(

− 3
32

+
1

8N
− N

64
+

N2

64

)

+ 〈∆χ+u2〉〈χ+〉
(

− 3
32

+
1

8N
− N

64
+

N2

64

)

+ 〈∆χ+u2χ+〉
(

−1
2

− 3N2

32

)

+ 〈∆χ+χ+〉〈u2〉
(

−1
8

− 19
8N

+
17N

32
+

N2

32

)

+ 〈∆χ+〉〈χ+〉〈u2〉
(

11
32

+
17

8N2 +
1

16N
− 3N

32

)

+ 〈{∆uµχ+}〉〈χ+uµ〉
(

3
4N

− 3N

32
+

N2

32

)

+ 〈{∆u2χ+χ+}〉
(

− 7
16

− N

16
− 5N2

64

)

+ 〈{∆uµχ+uµχ+}〉
(

1
2

+
3N

32
− 3N2

16

)

+ 〈{∆u2χ+}〉〈χ+〉
(

3
16

+
1

16N
− N

64
+

N2

64

)

+ i〈[∆χ
+µuµχ+ ]〉

(
− 9

16
− N

32
+

N2

8

)

+ i〈[∆uµχ µ
+

]〉〈χ+〉
(

− 3
16

+
1

4N
− N

8
+

N2

32

)

+ i〈[∆uµχ µ
+

χ+ ]〉
(

−1
4

+
N2

32

)

+ i〈[∆uµχ+ ]〉〈χ µ
+

〉
(

− 3
4N

+
5N

32

)

+ i〈[∆uµχ+χ µ
+

]〉
(

5
16

+
N

32

)

+ 〈∆hµνhµν〉〈χ+〉
(

N

32
− N2

32

)

+ 〈∆hµνχ+hµν〉
(

−1
8

+
N

16

)

+ 〈∆χ+〉〈hµνhµν〉
(

−N

16
− N2

32

)

+ 〈{∆χ+hµνhµν}〉
(

1
16

− N

32
+

N2

16

)

+ 〈[∆χ−hµνhµν ]〉
(

N2

32

)

+ 〈[∆uµχ−uµχ+ ]〉
(

9
32

+
N

64
− N2

16

)

+ 〈[∆uµχ+uµχ− ]〉
(

N2

64

)

+ 〈∆uµ〉〈[χ+uµχ− ]〉
(

− 1
4N

− 3N

32

)

+ 〈[∆χ−u2χ+ ]〉
(

9
32

+
N

64
− 5N2

64

)

+ 〈[∆uµχ− ]〉〈χ+uµ〉
(

3
4N

− N

96
− N2

96

)

+ 〈[∆uµχ−uµ]〉〈χ+〉
(

3
32

− 1
8N

+
N

16
− N2

64

)

+ 〈[∆uµχ−uµχ+ ]〉
(

− 1
32

− 1
N2 − 3N

64
− N2

32

)

+ 〈[∆uµχ−χ+uµ]〉
(

− 5
96

+
5N

192

)

+ 〈[∆uµχ+ ]〉〈χ−uµ〉
(

1
8

+
7

4N
− 11N

32

)
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+ 〈[∆uµχ+uµχ− ]〉
(

− 5
32

− N

64
+

N2

64

)

+ 〈[∆uµχ+χ−uµ]〉
(

− 5
32

− N

64

)

+ 〈[∆u2χ− ]〉〈χ+〉
(

3
32

− 1
4N

+
29N

96
− N2

48

)

+ 〈[∆u2χ−χ+ ]〉
(

− 7
48

+
1

2N2 − N

12
+

3N2

32

)

+ 〈[∆χ−u2χ+ ]〉
(

−19
96

+
1

2N2 +
N

192
− N2

64

)

+ 〈[∆u2χ+χ− ]〉
(

N2

64

)

+ 〈[∆χ−uµχ+uµ]〉
(

29
96

+
7N

192
− N2

16

)

+ 〈[∆χ−χ+ ]〉〈u2〉
(

1
16

+
1

4N
− N2

64

)

+ 〈[∆χ−χ+u2]〉
(

N

16
− 3N2

64

)

+ 〈[∆u2χ+ ]〉〈χ−〉
(

1
8

− 3
4N

+
N

8

)

+ i〈∆uµ〉〈χ µ
− 〉〈χ+〉

(
− 1

16
+

N

16

)

+ i〈{∆uµχ µ
− }〉〈χ+〉

(
3
8

− 1
2N

+
N

16
− N2

16

)

+ i〈{∆uµχ µ
− χ+}〉

(
−3

8
− N

16
+

N2

8

)

+ i〈{∆χ−µuµχ+}〉
(

−3
8

− N

16
+

N2

8

)

+ i〈∆uµ〉〈[hµ
νuνχ+ ]〉

(
N

8

)

+ i〈∆χ+〉〈χ
+µuµ〉

(
1
8

+
7

4N
− 3N

8
− 3N2

16

)

+ i〈{∆uµχ µ
− }〉〈χ+〉

(
N

32
− N2

32

)

+ i〈{∆uµχ+}〉〈χ µ
− 〉

(
−N

8

)

+ i〈{∆χ−µuµχ+}〉
(

1
16

− N

32
+

N2

16

)

+ i〈{∆uµχ µ
− χ+}〉

(
1
16

− N

32
+

N2

16

)

+ i〈[∆uµuνhµν ]〉〈χ+〉
(

−N

24
+

N2

96

)

+ i〈[∆uµuνχ+hµν ]〉
(

1
16

− N

32

)

+ i〈[∆uµhµ
ν ]〉〈χ+uν〉

(
7N

48
− N2

96

)

+ i〈{∆χ−µχ+uµ}〉
(

−1
8

+
N

16

)

+ i〈[∆uµχ+ ]〉〈hµ
νuν〉

(
− 1

N
+

N

4

)

+ i〈[∆uµχ+uνhµν ]〉
(

− 1
48

+
N

96

)

+ i〈[∆χ+uµuνhµν ]〉
(

1
24

− N

48
− N2

16

)

+ i〈[∆uµχ+hµ
νuν ]〉

(
− 5

48
+

5N

96

)

+ i〈[∆χ+uµhµ
νuν ]〉

(
7
16

+
N

32
− N2

16

)

+ i〈[∆χ+hµν ]〉〈uµuν〉
(

1
2N

− 3N

32

)

+ i〈[∆χ+hµνuµuν ]〉
(

1
12

− N

24
− N2

32

)

+ i〈∆uµ〉〈χ µ
+

〉〈χ−〉
(

1
8

+
1

2N2 − 3
8N

− N

16

)

+ i〈∆uµ〉〈χ µ
+

χ−〉
(

1
2

− 3
4N

+
5N

16
− N2

16

)

+ i〈∆χ
+µ〉〈χ−uµ〉

(
1
8

− 1
4N

+
3N

16

)

+ i〈∆χ−〉〈χ
+µuµ〉

(
1
8

+
3

4N
+

N

16

)

+ i〈{∆uµχ−}〉〈χ µ
+

〉
(

1
2N

+
N

32

)

+ i〈{∆uµχ−χ µ
+

}〉
(

−1
4

− 3N

32

)

+ i〈{∆χ−uµχ µ
+

}〉
(

−1
4

− N

16
− N2

32

)

+ i〈{∆χ−χ
+µuµ}〉

(
−5

8
− 3N

32
+

N2

16

)

+ 〈∆uµ〉〈χ {µ

+ ν}u
ν〉
(

− 1
3N

+
N

8

)

+ 〈∆uµ〉〈χ ν
+νuµ〉

(
− 4

3N
+

3N

8

)

+ 〈∆uµuν〉〈χ {µν}
+

〉
(

1
6N

+
N

72

)

+ 〈∆uµχ ν
+νuµ〉

(
− 1

36
− N2

72

)

+ 〈∆χ µ
+µ〉〈u2〉

(
− 2

3N
− N

72

)

+ i〈{∆uµχ µ
+

}〉〈χ−〉
(

1
8

− 1
8N

+
3N

32

)

+ 〈∆χ
+µν〉〈uµuν〉

(
− 1

3N
+

N

18

)

+ 〈∆u2〉〈χ µ
+µ〉

(
2

3N
+

11N

36

)

+ 〈{∆uµuνχ {µν}
+

}〉
(

1
72

− N2

144

)
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+ 〈∆χ−〉〈χ−u2〉
(

−1
8

− 3
2N

)

+ 〈{∆u2χ µ
+µ}〉

(
−23

72
+

23N2

144

)

+ i〈[∆χ−uµχ µ
− ]〉

(
N2

32

)

+ 〈{∆uµχ µ
+ νuν}〉

(
− 7

36
+

N2

36

)

+ i〈[∆uµχ µ
− χ− ]〉

(
−N2

32

)

+ i〈[∆uµχ− ]〉〈χ µ
− 〉

(
N

16

)

+ i〈[∆χ−uµχ µ
− ]〉

(
−1

4
+

N2

16

)

+ i〈[∆χ−χ
+µuµ]〉

(
−1

4
+

N2

16

)

+ 〈∆uµ〉〈χ−uµ〉〈χ−〉
(

−1
8

− 1
2N2 +

3
8N

+
N

16

)

+ 〈∆uµ〉〈χ−χ−uµ〉
(

−1
2

+
1
N

− N

4
+

N2

16

)

+ 〈∆uµχ−〉〈χ−uµ〉
(

− 1
16

+
1

8N
− 3N

32

)

+ 〈∆u2〉〈χ−χ−〉
(

− 1
8N

− N

32

)

+ 〈∆χ−χ−〉〈u2〉
(

− 5
8N

+
3N

32

)

+ 〈∆χ−uµ〉〈χ−uµ〉
(

− 1
16

+
1

8N
− 3N

32

)

+ 〈∆χ−u2χ−〉
(

5
24

+
1

N2 +
N

32
+

7N2

96

)

+ 〈{∆uµχ−}〉〈χ−uµ〉
(

1
4N

− 3N

32

)

+ 〈∆uµχ−uµ〉〈χ−〉
(

−1
8

+
1

8N
− N

16

)

+ 〈{∆uµχ−uµχ−}〉
(

13
48

− 1
N2 +

3N

32
− N2

96

)

+ 〈∆uµχ−χ−uµ〉
(

5
24

+
N

8

)

+ 〈{∆u2χ−}〉〈χ−〉
(

− 1
16

− 5
16N

− N

32

)

+ 〈{∆u2χ−χ−}〉
(

1
3

+
1

2N2 +
N

16
− N2

96

)

+ 〈∆uµ〉〈hνρh
νρuµ〉

(
3N

16

)

+ 〈∆uµ〉〈{hµ
νhν

ρu
ρ}〉
(

N

16

)

+ 〈∆uµuν〉〈hµ
ρh

νρ〉
(

N

36

)
+ 〈∆uµuν〉〈hν

ρh
µρ〉
(

−N

72

)

+ 〈∆uµhµ
νhν

ρu
ρ〉
(

−N2

36

)
+ 〈∆uµhνρh

νρuµ〉
(

− N2

144

)

+ 〈∆hµν〉〈hµνu2〉
(

N

72

)
+ 〈∆hµν〉〈{hν

ρu
ρuµ}〉

(
−N

36

)

+ 〈∆hµνuµuρh
νρ〉
(

− 1
12

)
+ 〈∆hµνuρu

µhνρ〉
(

− 1
12

)

+ 〈∆hµνhµν〉〈u2〉
(

− N

144

)
+ 〈∆hµνhµ

ρ〉〈uνuρ〉
(

N

36

)

+ 〈∆hµνu2hµν〉
(

−1
3

)
+ 〈∆u2〉〈hµνhµν〉

(
11N

72

)

+ 〈{∆uµuνhµ
ρh

νρ}〉
(

1
24

)

+ 〈{∆uµuνhν
ρh

µρ}〉
(

1
24

− N2

144

)

+ 〈{∆uµhµ
ν}〉〈hν

ρu
ρ〉
(

−N

48

)

+ 〈{∆uµhµ
νhν

ρu
ρ}〉
(

N2

36

)

+ 〈{∆uµhνρ}〉〈hµρuν〉
(

−N

48

)

+ 〈{∆uµhνρ}〉〈hνρuµ〉
(

−N

48

)

+ 〈{∆u2hµνhµν}〉
(

1
6

+
23N2

288

)

+ i〈∆uµ〉〈[χ
+νuµuν ]〉

(
−N

48

)

+ i〈[∆uµuν ]〉〈χ µ
+

uν〉
(

−N

48

)

+ i〈[∆uµuνuµχ ν
+

]〉
(

− 5
24

)

+ i〈[∆uµuνχ µ
+

uν ]〉
(

1
8

)
+ i〈[∆uµuνχ ν

+
uµ]〉

(
1
8

)

+ i〈[∆uµχ µ
+

]〉〈u2〉
(

1
4N

− N

12

)

+ i〈[∆uµχ
+ν ]〉〈uµuν〉

(
1

2N
+

N

48

)

+ i〈[∆uµu2]〉〈χ µ
+

〉
(

11N

48

)

+ i〈[∆uµu2χ µ
+

]〉
(

1
6

+
N2

48

)

+ i〈[∆u2uµχ µ
+

]〉
(

1
6

− 7N2

48

)

+ i〈[∆u2χ
+µuµ]〉

(
1
8

− N2

16

)

+ i〈∆uµ〉〈uµuν〉〈χ ν
− 〉

(
−1

3

)

+ i〈∆uµ〉〈χ µ
− u2〉

(
− 2

3N
+

19N

72

)
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+ i〈∆uµ〉〈{χ−νuµuν}〉
(

− 5
3N

+
11N

16

)

+ i〈{∆uµuν}〉〈χ µ
− uν〉

(
1

3N
+

N

144

)

+ 〈∆uµ〉〈{χ+uµu2}〉
(

− 3
4N

− 5N

32
+

N2

32

)

+ i〈∆uµuνuµ〉〈χ ν
− 〉

(
N

72

)

+ i〈∆uµuνχ ν
− uµ〉

(
− 1

36
− N2

72

)

+ i〈∆uµχ µ
− 〉〈u2〉

(
− 2

3N
− N

72

)

+ i〈∆uµχ−ν〉〈uµuν〉
(

− 1
3N

+
N

18

)

+ i〈∆uµχ−νuνuµ〉
(

− 1
36

− N2

72

)

+ i〈∆χ
+µ〉〈u2uµ〉

(
N

72

)

+ i〈∆χ
+µuµ〉〈u2〉

(
− 2

3N
− N

72

)

+ i〈∆χ
+µuν〉〈uµuν〉

(
− 1

3N
+

N

18

)

+ i〈{∆uµuνuµχ ν
− }〉

(
1
72

− N2

288

)

+ i〈{∆uµuνχ µ
− uν}〉

(
− 1

12
− N2

288

)

+ i〈∆u2〉〈χ
+µuµ〉

(
4

3N
+

11N

12

)

+ i〈{∆uµuνχ ν
− uµ}〉

(
1
72

− 5N2

288

)

+ i〈{∆uµχ µ
− }〉〈u2〉

(
− N

144

)

+ i〈{∆uµχ µ
− u2}〉

(
− 7

72
+

N2

72

)

+ i〈{∆uµχ−ν}〉〈uµuν〉
(

−N

48

)

+ i〈{∆uµχ−νuµuν}〉
(

− 7
72

+
N2

72

)

+ 〈∆uµ〉〈χ+uµu2〉
(

7
12N

− 83N

288

)

+ i〈{∆u2uµχ µ
− }〉

(
−11

72
+

23N2

96

)

+ i〈{∆u2χ
+µuµ}〉

(
−1

4
+

77N2

288

)

+ i〈{∆uµu2χ µ
− }〉

(
−23

72
− N2

96

)

+ 〈∆uµ〉〈uµuν〉〈χ+uν〉
(

− 5
12

+
N

8

)

+ 〈∆uµ〉〈u2〉〈χ+uµ〉
(

1
4

+
N

8

)

+ 〈∆uµ〉〈u2uµ〉〈χ+〉
(

−3
8

+
N

8

)

+ i〈{∆uµu2}〉〈χ µ
− 〉

(
−23N

144

)

+ 〈∆uµ〉〈χ+uνuµuν〉
(

7
3N

− 9N

16

)

+ 〈∆uµ〉〈χ+u2uµ〉
(

7
12N

− 83N

288

)

+ 〈∆uµuν〉〈χ+uµuν〉
(

− 1
6N

− 11N

144

)

+ 〈∆uµuν〉〈χ+uνuµ〉
(

− 1
6N

− 5N

144

)

+ 〈∆uµuνuµuν〉〈χ+〉
(

N

24
− N2

16

)

+ 〈∆uµuνχ+〉〈uµuν〉
(

1
12N

− N

72

)

+ 〈∆uµuνuµ〉〈χ+uν〉
(

−23N

144

)

+ 〈∆uµuνχ+uµuν〉
(

− 3
16

+
N2

96

)

+ 〈∆uµuνχ+uνuµ〉
(

83
144

− N

8
+

5N2

288

)

+ 〈∆uµχ+uν〉〈uµuν〉
(

1
6N

− 13N

144

)

+ 〈∆uµχ+〉〈u2uµ〉
(

− N

144

)

+ 〈∆uµχ+uµ〉〈u2〉
(

13
12N

+
N

144

)

+ 〈∆uµu2uµ〉〈χ+〉
(

N

48
+

N2

16

)

+ 〈∆{uµχ+u2uµ}〉
(

1
144

+
N2

288

)

+ 〈∆u2〉〈u2〉〈χ+〉
(

− 1
16

+
N

16

)

+ 〈∆u2〉〈χ+u2〉
(

− 2
3N

− 13N

36
+

N2

16

)

+ 〈∆u2u2〉〈χ+〉
(

−5N

16
+

N2

16

)

+ 〈∆u2χ+〉〈u2〉
(

1
6N

+
N

288

)

+ 〈∆u2χ+u2〉
(

− 3
16

− N

16
− 11N2

96

)

+ 〈∆χ+〉〈uµuνuµuν〉
(

−N

6
− N2

16

)
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+ 〈∆χ+〉〈u2〉〈u2〉
(

3
16

+
N

32

)

+ 〈∆χ+〉〈u2u2〉
(

5N

12
+

N2

16

)

+ 〈∆χ+uµ〉〈u2uµ〉
(

− N

144

)

+ i〈∆uµ〉〈hµ
νuν〉〈χ−〉

(
1
8

− N

16

)

+ 〈∆uµ〉〈hµ
νρu

νuρ〉
(

−N

8

)

+ i〈∆uµ〉〈{hµ
νuνχ−}〉

(
N

16
− N2

32

)

+ 〈∆uµ〉〈hµ
νρu

νuρ〉
(

N

4

)
+ 〈∆uµ〉〈{h µ

ν ρu
νuρ}〉

(
5N

144

)

+ i〈∆uµuν〉〈hµνχ−〉
(

−3N

16

)

+ 〈∆uµuν〉〈hµν
ρu

ρ〉
(

− N

144

)

+ 〈∆uµuν〉〈hνµ
ρu

ρ〉
(

− N

144

)

+ 〈∆uµuν〉〈h µν
ρ uρ〉

(
−N

24

)

+ i〈∆uµhµ
νuν〉〈χ−〉

(
N

8

)

+ 〈∆hµνρ〉〈{uµuρuν}〉
(

−N

18

)

+ 〈{∆uµuνuρh
µνρ}〉

(
1
24

)

+ 〈{∆uµuνuρh
νµρ}〉

(
− 1

24
− N2

144

)

+ 〈{∆uµuνuρh
ρµν}〉

(
− 1

12

)

+ i〈{∆uµuνhµν}〉〈χ−〉
(

N

32

)

+ 〈{∆uµuνhµν
ρu

ρ}〉
(

1
24

+
N2

48

)

+ 〈{∆uµuνhνµ
ρu

ρ}〉
(

1
24

)

+ i〈{∆uµuνχ−hµν}〉
(

−1
8

+
3N

32

)

+ 〈{∆uµh µ
ν ρ}〉〈uνuρ〉

(
−N

48

)

+ 〈{∆uµhν
µ

ρ}〉〈uνuρ〉
(

N

144

)

+ i〈∆χ−〉〈hµνuµuν〉
(

N

16

)

+ 〈∆hµνρ〉〈uµuνuρ〉
(

−N

18

)

+ i〈{∆uµχ−uνhµν}〉
(

1
48

− N

32

)

+ i〈{∆uµχ−hµ
νuν}〉

(
− 1

48
+

N

32

)

+ i〈{∆χ−uµuνhµν}〉
(

1
6

− N2

96

)

+ i〈{∆χ−uµhµ
νuν}〉

(
− 3

16
− 3N

32
+

N2

48

)

+ i〈{∆χ−hµν}〉〈uµuν〉
(

−N

32

)

+ i〈{∆χ−hµνuµuν}〉
(

7
48

+
N2

48

)
. (C.1)

〈·〉 denotes the trace in SU(N). We calculated the generic
case with N flavors in order to make the above countert-
erm also usable for the quenched case [24,25]. The calcula-
tion was performed in euclidean space-time, but above we
provide the result transformed back to Minkowski space.
Furthermore we used the notation

[A1...An] := A1A2...An − AnAn−1...A1;
{A1...An} := A1A2...An + AnAn−1...A1.

The above expression corresponds only to the part of A(2)
2 ,

which does not involve any external vector sources and can
contribute to processes involving four pseudo Goldstone
fields, i.e. can be used for the (physical) K → ππ and
K → πππ amplitudes. For obvious reasons we do not pro-
vide a minimal basis for L(2)

w . However, for the part of A(2)
2

shown here, all operators are linearly independent: One
can use Cayley–Hamilton relations (CHR), the Bianchi
identities and partial integrations to (potentially) reduce
the number of operators and find a basis. Yet, the CHR
are not usable since we worked in general SU(N), the
Bianchi identities involve vector sources which were ne-
glected, and partial integrations cannot be employed since
it would necessarily generate an operator involving ∆µ

2.
We do not present the full result, including also the

operators containing ∆µ and fµν
± , here, since it is approx-

imately a factor four times larger. It can however be ob-
tained from the author.

Appendix D: Notation and definitions

The notation is as follows:

U := u2 := exp

(
i
√

2φ

F

)
; U −→ gRUg†

L,

with φ, defined in (2.4), representing the pseudo Goldstone
bosons and the arrow showing the response of U to a chiral
transformation (gL, gR) ∈ (SU(3)L, SU(3)R

)
.

2 In a full basis it would however be preferable to trade op-
erators within Ã(2)

2 for operators involving ∆µ.
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The building blocks used are:

∆ := uλ6u
†,

uµ := i
(
u†(∂µ − irµ)u − u(∂µ − ilµ)u†),

χ± := u†χu† ± uχ†u,

Γµ :=
1
2
(
u†(∂µ − irµ)u + u(∂µ − ilµ)u†),

∇µX := ∂µX + [Γµ, X],

∆µ := ∇µ∆ +
i
2
{∆, uµ}, (D.1)

uµν := ∇µuν ,

hµν := ∇µuν + ∇νuµ,

hµνρ := ∇µhνρ,

χ±,µ := ∇µχ± − i
2
{χ∓, uµ},

χ±µ := ∇µχ± ,

χ±{µ,ν} := {∇µ,∇ν}χ± .

All of these transform like:

X → h(φ, g)Xh†(φ, g),

where h(φ, g) is the compensating SU(N)V transforma-
tion defined by:

u → gRuh†(φ, g) = h(φ, g)ug†
L,

with the exception of ∆µ which transforms like ∆µ →
gL∆µg†

L. In addition we used notation that derives from
the above (u2 := uµuµ, hµνρσ := ∇µ∇νhρσ etc.). All
calculations were performed with FORM 3.1 [20].

Furthermore, we used:

ε := 4 − d ; N̂ := (4π)−2 ; Λ :=
N̂

ε
. (D.2)

Appendix E: Expansion of the building blocks
in the ξ fields

Below we provide the expansion of the building blocks
given in Appendix D in terms of the quantum fluctuation
fields ξ. The building blocks on the RHS are evaluated at
the EOM (expressed by the bar).

∆ = ∆̄ − i
2
[∆̄, ξ] − 1

8
[[∆̄, ξ], ξ]

+
i

48
[[[∆̄, ξ], ξ], ξ] + O(ξ4),

uµ = ūµ − ξµ − 1
8
[[ūµ, ξ], ξ] +

1
24

[[ξµ, ξ], ξ]

+ O(ξ4),

Γµ = Γ̄µ +
1
4
[ūµ, ξ] − 1

8
[ξµ, ξ]

− 1
96

[[[ūµ, ξ], ξ], ξ] + O(ξ4),

χ± = χ̄± − i
2
{χ̄∓ , ξ} − 1

8
{{χ̄± , ξ}, ξ}

+
i

48
{{{χ̄∓ , ξ}, ξ}, ξ} + O(ξ4),

fµν
± = f̄µν

± − i
2
[f̄µν

∓ , ξ] − 1
8
[[f̄µν

± , ξ], ξ]

+
i

48
[[[f̄µν

∓ , ξ], ξ], ξ] + O(ξ4),

∆µ = ∆̄µ − i
2
[∆̄µ, ξ] − 1

8
[[∆̄µ, ξ], ξ]

+
i

48
[[[∆̄µ, ξ], ξ], ξ] + O(ξ4),

χ±, µ
= χ̄±, µ

− i
2
{χ̄∓, µ

, ξ} − 1
8
[[χ̄±, µ

, ξ], ξ] + O(ξ3),

uµν = ūµν − ξµν +
1
4
[[ūµ, ξ], ūν ] − 1

8
[[ūµν , ξ], ξ]

− 1
4
[[ūµ, ξ], ξν ] − 1

4
[[ūν , ξ], ξµ] + O(ξ3),

X̂ = −ξµµ +
1
4
[[ūµ, ξ], ūµ] +

1
4
{χ̄+ , ξ}

− 1
2N

〈χ̄+ξ〉 − 1
2
[[ūµ, ξ], ξµ] − 1

4
ξχ̄−ξ

+
1

4N
〈χ̄−ξ2〉 + O(ξ3). (E.1)

We use the conventions u = ū exp(iξ/2), ξ =
∑

λaξa,
〈λaλb〉 = 2δab and the notation ξµ := ∇µξ, ξµν := ∇µ∇νξ.
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